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ABSTRACT: This paper presents a novel algorithm that enables the semi-automatic reconstruction of man-made 

structures (e.g. buildings) into piecewise planar 3D models from a single image, allowing the models to be readily 

used for data acquisition in 3D GIS or in other virtual or augmented reality applications. Contrary to traditional 

labor intensive but accurate Single View Reconstruction (SVR) solutions that are based purely on geometric 

constraints, and recent fully automatic albeit low-accuracy SVR algorithms that are based on statistical inference, 

the presented method achieves a compromise between speed and accuracy, leading to less user input and 

acceptable visual effects compared to prior approaches. Most of the user input required in the presented approach 

is a line drawing that represents an outline of the building to be reconstructed. Using this input, the developed 

method takes advantage of a newly proposed Vanishing Point (VP) detection algorithm that can simultaneously 

estimate multiple VPs in an image. With those VPs, the normal direction of planes which are projected onto the 

image plane as polygons in the line drawing can be automatically calculated. Following this step, a linear system 

similar to traditional SVR solutions can be used to achieve 3D reconstruction. Experiments that demonstrate the 

efficacy and visual effects of the developed method are also described. 

KEYWORDS: Computer Vision, J-linkage, Vanishing Point, Single View Reconstruction, Image Based Modeling, 

Virtual Reality, Augmented Reality 

1. INTRODUCTION 

Single v iew reconstruction (SVR), as one of the image based modeling (IBM) techniques, has been extensively 

studied from both the side of computer graphics and computer vision. It could help us in the situation when we 

want to recover a 3D scene while having only one image at hand, which means the traditional mult iple view 

reconstruction approaches in either close-range photogrammetry or computer vision cannot be applied. 

In the past, the main stream of SVR algorithms focus ed purely on the geometric structural information that one 

can infer from a single v iew of the scene as apriori knowledge. The key idea of these approaches is that through 

this knowledge provided by users, a scene’s 3D structure can be calculated by geometry theorems. "Tour into the 

picture (TIP)", proposed by computer graphic researchers  (Youichi et al., 1997), is probably  the earliest solution 

taking advantage of vanishing point (VP) to recover 3D structures, though the assumption that the picture has 

only one VP limits its application. Almost at the same time, computer vision researchers from University of 

Oxford conducted a series of research works on single v iew metrology (Crimin isi et  al., 2000, Liebowitz and 

Zisserman, 1999), introducing the theory of projective geometry which laid a solid mathematical foundation for 

SVR. Later, researchers from INRIA proposed a SVR algorithm based on user-provided constraints such as 

coplanarity and perpendicularity to form a linear system (Sturm and Maybank, 1999). Compared with other 

similar methods (Grossmann and Santos-Victor, 2005, van den Heuvel, 1998), Sturm's algorithm is regarded as 

one of the most flexible ones and will be the basis of SVR method in this paper. 

Recently, a group of computer vision researchers have shifted their attention from geometry to machine learn ing 

to develop new SVR algorithms. Arguing the traditional SVR to be labor-intensive, Hoiem et al. from Carnegie 
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Mellon University proposed a fully automatic algorithm that folds the image segments into a pop-up model 

(Hoiem et  al., 2005). Similar algorithms include dynamic Bayesian network SVR of indoor image  (Delage et  al., 

2006) and Markov Random Field (MRF) SVR (Delage et al., 2007, Saxena et al., 2006). Although these 

algorithms can achieve full automation, their reconstructed 3D model’s visual effects still need to be improved 

for virtual reality or augmented reality applications. 

In this research, inspired by the idea of utilizing machine learn ing algorithms to deduce some of this geometric 

structural information so as to reduce a part of labor burden on users , we integrate a newly proposed line 

segment detector(LSD) (Grompone et al., 2010) and a robust multiple structures estimator (Toldo and Fusiello, 

2008) into Sturm’s SVR algorithm. It  will first be compared with traditional methods in section 2 and then be 

explained in detail in section 3. Some of the experimental results are given in section 4, fo llowed by 

summarization of this paper’s contributions and a conclusion. 

2. OVERVIEW 

2.1 Traditional SVR 

Figure 1 presents the general schema of traditional SVR algorithms  (FIG. 1). 

 

 

 

 

FIG. 1: General schema of traditional SVR algorithms 

Constraints A provided by users are usually parallel constraints, i.e. which  image line segments ’ 3d  object space 

correspondences are with the same direction. In fact, this process equals to a manual classification on line 

segments - line segments whose 3D correspondences with the same direction are g rouped into a same class. Each  

group of line segments’ extended lines should intersect (ideally if without measurement errors) at  the same point 

in the image plane, i.e. the vanishing point. If three vanishing points are found whose corresponding 3D 

directions are perpendicular to each other, the camera’s principle point and focal length can then be calculated 

(Caprile and Torre, 1990). 

Constraints B are mainly  coplanar constraints in Sturm’s methods. By specifying which image points ’ 3D 

correspondences lie  on the same 3D p lane, whose normal direction is also specified through combination of any 

two vanishing points, a linear system could then be formed and solved. The solution of that linear system 

contains each image point’s depth, which also means the 3D structure of the scene. 

2.2 Semi-auto SVR 

Compared with traditional SVR approaches, our method tries to minimize the user input by taking advantage of 

a multiple structures estimator called j-linkage (FIG. 2). 

 

 

 

 

 

 

 

 

FIG. 2 Schema of our semi-automatic SVR algorithms 
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As we can see from FIG. 2, the user input constraints A and B in FIG. 1 are rep laced with “user input line 

drawings” and “user validate/supplement constraints”. This means the parallel constraints and 3D plane’s normal 

directions will be automat ically deduced instead of being specified by users. Thus users will on ly need to sketch 

out the building to be reconstructed from a single image, leave all the computation to the algorithms, then check 

and validate the constraints reasoned by the algorithms, and supplement other constraints if necessary. This will 

then allow the reconstructed 3D model to be manipulated on the computer. 

2.3 Global Assumptions 

Before we exp lain our semi-automat ic SVR algorithm in detail, there are several global assumptions that must be 

addressed: 

 No radial distortion. The image used in our algorithm should already be corrected for radial d istortion, or 

the radial distortion parameter must be small enough to be ignored. Generally, this assumption can be easily 

met, as long as we do not use special lens  (such as wide-angle lens or fish-eye lens) and the building to be 

reconstructed lies in the middle of the image. 

 Camera’s principle point is located at the image center, its aspect ratio is 1 and skew factor is 0. This 

assumption means the calibrat ion matrix of the camera has the form (with known image width  and 

height , while focal length  as the only unknown parameter to be calibrated) 

 , (1) 

Although the assumption that principle point locates at the center of the image seems to be too strong, 

considering the manufacturing quality o f d igital consumer cameras, experiments have shown that  this error 

will not induce much effect on the reconstructed model’s visual effects. 

 Camera coordinate system is our world coordinate system. This means we ignore all the six exterior 

parameters, i.e. the translation and rotation of the camera, so the project ion matrix o f the camera will be of 

the following form: 

 . 

Also our reconstructed 3D point is up to a scale factor, meaning we are only concerned about its shape but 

ignore its size. In many virtual reality applications, this  is sufficient. 

 Manhattan World Assumption (Coughlan and Yuille, 1999). This assumption is saying that a natural 

reference frame is given in  most indoor and outdoor city scenes, for they are based on a Cartesian 

coordinate system. Under this assumption, we could use vanishing-point calibration algorithm to recover 

the focal length of the camera. 

3. ALGORITHM MODULES 

Our proposed SVR algorithm consists of six sub-procedures, as can be seen from FIG. 2. Each module will be 

described in detail in the following sections. 

3.1 User Input 

 

 

 

FIG. 3 Input and output(I/O) of user Input module 

Most of the user interactions in our method are handled in this module. It enables users to sketch out the skeleton 

of the building with a set of line segments , in which a line 

segment  is represented by its two end points . 

The data structure in this module enables applying computational geometry algorithms , in order to output an 

User input line segment set U 
User Input 

1. Image Point Array I 

2. Polygon set G 
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image point array , whose elements all come from end points of line 

segments in , and a set of polygons , in which  each polygon is represented by an ordered index array of 

image point array . 

To reconstruct the output image point array ’s 3D correspondence will be our SVR method’s final objective. 

Along with the topological information stored in polygon set , one can easily get the building’s 3D model. 

3.2 Line Segment Detector 

 

 

 

FIG. 4 I/O of LSD module 

Similar to line segment set  in  FIG. 3, LSD module’s output  are also line segments represented by end 

points. 

However, d ifferent from the t raditional edge detection method which  first uses Canny edge detector followed  by 

a series of complicated post-processing (Tardif, 2009), the newly proposed Line Segment Detector (LSD) 

(Grompone et al., 2010) provides us a fast, simple and easy-to-use interface which also gives accurate results yet 

requires no parameter tuning. 

3.3 J-linkage 

 

 

 

FIG. 5 I/O of J-linkage module 

J-linkage module wraps a recently proposed robust mult iple structures estimator (Toldo and Fusiello, 2008), 

taking as input line segment sets  and  in the first two modules , outputting sorted line segment classes 

, a ordered array of line segment sets sorted by their sizes, in which  

each element  is a set of line segments coming from  and  where the operator  represents the 

number of elements of the set. Ideally, each class of line segments should correspond to a vanishing point and 

hence a 3D direction in object space. 

The j-linkage estimator was carefully designed to robustly estimate models with multiple instances in a set of 

data points. This leads us to the Hough Transform. However, quantization of the parameter space, the basis of 

Hough Transform, will inevitably cause many of its shortcomings such as inaccuracy and the choice of 

parameterization of models. Enlightened by a popular parameter estimation approach in computer vision, 

RANSAC (Fischler and Bolles, 1981), and the conceptual representation from pattern recognition, the j-linkage 

estimator also needs no parameter tuning. Besides estimation of multiple model instances, it could classify all 

data points according to the best model instance they fit, which will be of great use in our normal deduction 

module. 

In our algorithm, the “data points” for J-linkage are line segments , from both user drawn and LSD detection, and 

the “model instances” are vanishing points. Line segments through different vanishing points are classified into 

different line segment groups. In order to apply j-linkage estimator, three functions have to be defined: 

1. function  that solves model parameters from minimal number of data points  

2. function  that estimates the distance (or fitness) of a given model and a data point 

3. distance function  of a pair of data points 

For function , one can easily figure out that the minimal number of data points  (i.e. line segments) needed to 

solve the model parameters  (vanishing point’s coordinate in  image plane) is two. By using homogeneous 

The single image to be reconstructed 
LSD 

Detected line segment set D 

Line segment sets U and D 
J-linkage 

Sorted line segment classes C 
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coordinates, it can be written as (operator  means cross product of two 3D vectors) 

 . (2) 

Function , as the discussion in literature  (Tardif, 2009), could  be well approximated by the d istance of the line 

segment’s end point and the line through the vanishing point and the mid-point of the line segment (FIG. 6), as 

below (  is homogeneous coordinate of a vanishing point,  is a  line segment represented by two end points  

and  is the distance function of 2d point to line): 

 . (3) 

 

FIG. 6 Approximation of fitness function F 

Function , to be used at the random sampling step in j-linkage estimator, was not described in the literature 

(Tardif, 2009). According to the key idea of j-linkage and our experiments, it could also be well approximated as  

the distance of two line segments’ middle points: 

  (4) 

3.4 Vanishing-point Calibration 

 

 

 

FIG. 7 I/O of vanishing-point calibration module 

In this module, based on the above mentioned Manhattan world assumption, we further assume that the first 

three largest line segment classes in size should correspond to the three coordinate basis directions in the 

Manhattan reference frame, which  is to say their corresponding 3D direct ions are perpendicular with each other.  

With this assumption which is often valid in most of the urban outdoor and indoor scenes, there is no need for 

users to specify which three classes of line segments form a orthogonal coordinate system. 

Hence the vanishing point calibrat ion could be automatically completed. Firstly, for each class of line segments, 

estimate the best fit vanishing point through: 

 , (5) 

In equation (5),  is the homogeneous coordinate of the vanishing point , and could be solved using 

the singular value decomposition (SVD) algorithm. After the first two vanishing points   are estimated  

First two classes of line segments in C 
VP Calibration 

Camera’s focal length f 
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from the two classes, the camera focal length  could be calculated by the equation (Caprile and Torre, 1990): 

 , (6) 

In (6) . 

3.5 Normal Deduction 

 

 

 

FIG. 8 I/O of normal deduction module 

Normal deduction is essential in many SVR algorithms  (Grossmann and Santos-Victor, 2005, Sturm and 

Maybank, 1999). One of our semi-automatic SVR algorithm’s features is that, in  this module it could  

automatically calculate and assign normal d irections for each of the 3D planes which are projected onto the 

image plane as polygons, while in traditional SVR algorithms they has to be specified all by users manually.  

The basic idea of this module is the fact that with two known 3D directions parallel to a 3D plane, the normal 

direction of the plane could be calculated, i.e. their cross product. While in  camera geometry, 3D d irections 

correspond to vanishing points in image p lane, thus one can get the following equation  (Sturm and Maybank, 

1999): 

 , (7) 

In (7),  is the unit normal d irect ion,  is camera calibration matrix from equations (1) and (6) and  

are homogeneous coordinates of two different vanishing points whose corresponding 3D d irect ions are parallel 

to the plane with normal . 

Once we know how to calculate the normal d irection from the 3D plane’s two different vanishing points, the 

only computation remain ing is how to automat ically find two vanishing points of a 3D plane (projected onto the 

image p lane as polygon). With the help of some simple computational geometry  algorithms, and the assumption 

that each 3D plane has plenty of parallel lines with at least two different directions, our normal deduction 

algorithm could be described in the following pseudo-code: 

For each polygon g in polygon set G 

 From within line segment set U and D, put all line segments that lie within g into a new line segment set T 

 Find two line segment classes , such that among all classes,  are the two largest 

 Estimate two vanishing points  from  by equation (5) 

 Calculate the unit normal direction  by equation (7), which is the deduced normal for polygon g 

Certainly, under some special cases, those assumptions do not hold, so  errors may happen and some of the 

calculated normal directions  may go wrong. That is why there needs to be a validation step for users to check 

those errors (FIG. 2), and this is still much easier than the traditional method. 

3.6 Sturm’s SVR 

 

 

 

 

FIG. 9 I/O of SVR module 

This module is basically the same as Sturm’s SVR algorithm (Sturm and Maybank, 1999). However, we add 

another kind of constraint into their orig inal linear system---parallelogram constraint. The purpose of this is to 

1. Image point array I & Polygon set G 

2. Normal set N(& supplement constraints) 

3. Camera focal length f 

SVR 
3D points array P corresponds to 

I 

1. Sorted line segment classes C 

2. Polygon set G and focal length f 
Normal Deduction 

Normal set N corresponds to G 
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make our algorithm more flexible, for parallelograms are easy to find on buildings and there is no need to use 

normal information when adding this constraint into the system. 

The parallelogram constraint is based on the geometry fact that if four 3D points  could 

successively form a parallelogram, they must satisfy the equation 

 . (8) 

Using the same parameterization as Sturm’s method, if there are  image points to be reconstructed,  

polygons, and  parallelograms, the linear system should be 

 , (9) 

in which  expresses the parallelogram constraint and matrices  have the same meaning as 

Sturm’s method. 

4. EXPERIMENTS 

We implement the above semi-automatic SVR algorithm in Windows XP platfo rm using C++. The LSD module 

is available provided by its author at http://www.ipol.im/pub/algo/gjmr_ line_segment_detector/ . The original 

j-linkage module is also provided by its author at http://www.toldo.in fo/roberto/?page_id=46. Some of the 

experiment results are shown below. 

 

FIG. 10 User inputs a set of line segments (drawn in green)
1
(Denis et al., 2008) 

 
FIG. 11 LSD and J-linkage output, the first three classes are drawn in red, green and purple respectively 

                                                                 

1 This picture comes from York Urban Database provided by Denis et al. 2008 

http://www.ipol.im/pub/algo/gjmr_line_segment_detector/
http://www.toldo.info/roberto/?page_id=46
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FIG. 12 Reconstructed 3D model in wire-frame and surface mode 

  
FIG. 13 Another reconstructed 3D model 

5. CONTRIBUTIONS 

The main contributions of this paper are summarized as follows: 

 Introducing LSD and J-linkage algorithms into SVR, under certain  assumptions, the automation of 

vanishing point calibration and 3D plane normal deduction are made possible. 

 Taking advantage of a new kind of constraint—parallelogram, integrating it into the Sturm’s SVR linear 

system, our SVR algorithm becomes more flexible. 
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6. CONCLUSIONS 

This paper presented a novel SVR algorithm. By utilizing a newly proposed line segment dete ctor and a robust 

multip le structures estimator, we introduced automatic vanishing point calibrat ion and 3D plane normal 

deduction into the algorithm, thereby reducing much of the user interaction burden. Also, we extended the 

traditional SVR algorithm by adding parallelogram as a new kind of constraint, which does not need normal 

direction to fo rm the SVR linear system. In  the future we p lan to consider additional approaches to make this 

automation more robust. 
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