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ABSTRACT 

Accurately modeling as-built environments and tracking moving objects’ 

poses are critical for many Architecture, Engineering, Construction, and Facility 

Management (AECFM) automation applications. Equally important are the 

reliability, operating range and cost efficiency of such solutions for their broad 

deployment in unstructured, dynamic, and sometimes featureless AECFM sites. In 

this paper, a flexible vision-based technique is developed for accurate, robust, low-

cost, and scalable pose estimation and as-built modeling in AECFM applications. 

This technique combines marker-based pose estimation and structure-from-motion 

(SfM). In the preparation phase, a sparse set of visual markers are installed in the 

target environment. During the operation phase, a set of unordered images are taken 

with a calibrated RGB camera. These images are immediately processed by a SfM 

system to estimate those markers' poses and generate a sparse point cloud, which can 

be used by robots or other mobile clients for either moving objects' pose estimation, 

or dimensional analysis of that environment. Furthermore, for as-built modeling, the 

RGB camera is replaced by a RGBD camera to create both a dense 3D point cloud 

and a concise planar model of the environment. Experiments have demonstrated 

sufficient accuracy (average absolute error within 5mm over a 9m scale) of the 

proposed technique. 

 

INTRODUCTION 

3D geometric modeling in either construction sites or built environment has 

attracted increasing research interests in AECFM due to its importance for various 

construction and maintenance activities, such as as-built documentation, interior 

design and facility management. No matter what sensors are used for such modeling, 

a fundamental step is to find out different sensor poses (positions and orientations) in 

a same coordinate frame so as to reach a unified and meaningful result from raw data 

captured under different local coordinate frames of sensors. This is closely related to 

object pose estimation, another core problem appearing in many AECFM automation 

applications, such as safety and productivity monitoring of construction machinery. 

Among different technologies for 3D modeling or pose estimation, computer 

vision based methods have been introduced and investigated recently for potential 

construction applications. Whether the end result is a 3D model or an object's pose, 
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these methods operate based on identification of same physical elements' 

corresponding images (e.g., points, lines, planes, objects, etc.) across different camera 

views. Only with enough accurate and robust correspondences, can these methods 

estimate camera poses relative to each other, or triangulate 3D models across views. 

The assumption for this correspondence identification process (termed feature 

correspondence problem in computer vision) to be possible and reliable is that the 

target scene should be rich in locally distinguishable features that can be captured by 

cameras. So this assumption becomes the implicit condition of successful application 

of these computer vision based methods. Yet many industrial environments, such as 

indoor construction sites before finishing, often do not satisfy such assumption. They 

(e.g., walls, floors, ceilings) are frequently featureless or texture-less, or with repeated 

features, which particularly increases the difficulties for reliably, accurately, and 

efficiently solving the feature correspondence problem. 

To address this challenge, the camera marker network has been proposed 

(Feng et al. 2015) by adding necessary fiducial markers in such featureless 

environments, which forms an observation system with multiple cameras and markers 

for estimating poses of objects attached with those markers or cameras. These fiducial 

markers not only resolve the reliability and accuracy issue of that feature 

correspondence problem, but also improve the time-efficiency to enable real-time 

automation applications such as excavation monitoring. It is worth to note that in the 

original proposed camera marker network method, the poses of a set of fixed markers 

need to be calibrated by conventional surveying so that any camera's pose can be 

linked to the world coordinate frame when observing these markers. However, this 

surveying requirement could be costly and slow, especially when the number of 

markers increases, or some fixed markers' poses need frequent update. 

Thus in this paper, the marker assisted structure from motion is proposed to 

relax the abovementioned requirement of surveying poses of every fixed markers in a 

camera marker network. This technique combines marker-based pose estimation and 

the well-known structure from motion (SfM) in computer vision. SfM essentially 

means to recover the geometric structure of a scene by moving cameras and 

observing the scene from different poses. Similarly, when observing those fixed 

markers from different poses, one can recover their relative poses, thus replacing the 

need of surveying with simple image capturing. Based on this marker assisted SfM 

and the resulting fixed markers' poses, one can measure sparse critical information 

(distances, angles) of the target environment, perform object pose estimation within 

that space, or create 3D models describing the details of that space. 

The rest of the paper is organized as follows. Firstly relevant previous work is 

briefly discussed. Then the details of the marker assisted SfM are explained from the 

basic marker SfM to the marker and plane SfM as the RGBD extension. After that, 

two sets of experiments are discussed to demonstrate sufficient accuracy of the 

proposed technique. Finally conclusions and future directions are summarized. 

 

PREVIOUS WORK 

Geometric modeling of built environment and object pose estimation may be 

addressed by different methods. As-built survey is a widely applied method using 

conventional surveying equipment (such as total stations) to measure positions of key 
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points in the built environment and then generating as-built 2D plans or 3D models 

(usually in wireframe form). Such point-by-point surveys are accurate but inefficient. 

3D scanning technology is thus being increasingly adopted due to the fact that 

it can efficiently collect millions of 3D points forming a point cloud to describe the 

environment being scanned (Han et al. 2012; Cho and Gai 2014). The data collection 

device in 3D scanning is typically a terrestrial laser scanner (TLS) due to its high 

accuracy. Various algorithms have been proposed in this area, including data 

collection, registration, shape representation, and object recognition. Interested 

readers are referred to the literature review by Tang et al. (2010) for more details. 

The TLS based 3D scanning methods also have disadvantages, such as high 

costs of TLS and corresponding data processing software, requirement experts to 

design and perform the scan and post-process raw scan data, and the large volume 

and weight of TLS. Thus it is of interest to develop cost-efficient, easy-to-use, and 

lightweight solutions with sufficient accuracy. Off-the-shelf commercial digital 

cameras are thus attractive due to their relatively lower costs, weight and volume. 

Especially with the recent progress in SfM (Snavely et al. 2006) and visual 

simultaneous localization and mapping (VSLAM) (Engel et al. 2014), digital cameras 

become promising data collection devices to achieve tradeoffs between cost and 

accuracy. Thus in construction, computer vision based 3D modeling methods have 

been investigated with different applications (Brilakis et al. 2010; Golparvar-Fard et 

al. 2011; Dai and Lu 2012). 

All these computer vision based methods inherit the previously mentioned 

assumption about features, thus potentially suffer from inaccurate and unstable 

reconstruction or pose estimation in featureless areas. Marker based methods were 

thus proposed to tackle the challenge (Feng et al. 2015). It is worth noting that active 

3D sensors such as Kinect provides another low-cost way of address featureless 

challenge and has also gain interests in both robotics and construction research 

(Taguchi et al. 2013; Zhu and Donia 2013). The marker and plane SfM method 

proposed in this paper combines the marker based approach with such RGBD sensors 

to create a more compact and concise description of the target environment mixing 

points and planes, similar to Taguchi et al. (2013). 

 

TECHNICAL APPROACH 

The marker assisted SfM proposed here contains two methods. The basic 

method uses only an ordinary RGB camera. The second method extends the first one 

by replacing the RGB camera with an RGBD camera. They are all based on the 

theory of camera marker network which was detailed by Feng et al. (2015). 

 

Marker Structure from Motion 

This first method is a direct application of camera marker networks, which is 

also the foundation of the proposed solution. The basic idea is to attach markers on 

planes of the target environment. Then an intrinsically calibrated RGB camera is 

moved to different proper poses to take a sequence of images of those markers, 

forming a sequence of views. This results in a dynamic camera marker network of 

multiple views and multiple markers. When the marker poses are estimated in this 

network, poses of the corresponding planes can be determined, since it is reasonable 
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to assume these printed markers are on those planes. Because the poses of all markers 

cannot be finally estimated without moving the single camera to different views, this 

method is dubbed as marker SfM, as it is very similar to traditional point-based SfM. 

As illustrated in Figure 1, the marker SfM contains several operations to grow and 

maintain a dynamic camera marker graph, which are detailed in the following 

subsections. 

Initialization 

Before taking the first image, a camera marker graph needs to be initialized. 

As shown in Figure 1(a), this initialization is to specify the relationship between at 

least one marker node (denoted as a square) and the world node (denoted as the 

circle). Essentially this operation is to define what the world coordinate frame is in 

the resulting 3D model. In this graph, such relationships are represented as soft 

constraints (dotted lines), i.e. a triplet ( , , g)s ec  where s and e are the indices of the 

two connected nodes ,s ex x  and g is the constraint function. In initialization, this 

constraint is to directly specify the pose parameters of a marker s in the world 

coordinate frame e and thus termed as the fixed-node constraint (denoted with ‘=’): 

 1/2g ( , ) ( )s e s s

  x x P x x  (1) 

where [ , ]s s s T T T
tx e  is the known pose parameters (orientation e and position t) of 

the markers s, and 𝐏=  is the cross-covariance matrix of the known values sx  for 

properly weighting this constraint (in the sense of Mahalanobis distance). The 

markers added in this operation are termed as control markers and have similar 

purposes as control points in conventional surveying and photogrammetry. 

 

Discover New Markers 

After initialization, a user can start taking photos of those markers. Each 

photo will correspond to a new view node (denoted as a triangle) to be added to the 

initialized camera marker graph. An important rule of thumb of choosing proper 

poses for taking photos is that at least two markers (and generally the more the better) 

should be detectable in the photo, and their images should be as far apart as possible 

in this photo, leading to better conditioning of the system equations. 

Whenever a new photo is taken, the corresponding node needs to be initialized 

and added to the graph. There are three situations. The first one is that none of the 

markers detected in this new photo have been seen before. In this case, this view 

cannot be readily initialized to the graph because of no connections to existing 

markers. Thus this photo can be either discarded or cached for later processing 

whenever such connections can be found. 

     

(a) 

Initialization 

(b) Discover 

New Markers 

(c) Re-observe 

Old Markers 

(d) Detect 

Marker Constraints 

(e) 

Final Optimization 

Figure 1. Different operations in marker structure from motion 
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The second situation is that there exist some markers that have been observed 

before, while others are newly detected. In this case, the new view can be initialized 

by calculating the relative pose between those observed markers and this view, using 

either homography decomposition or solving the perspective-n-point problem (Feng 

et al. 2015). Once the view is initialized to the graph, those newly detected markers 

can now be subsequently initialized to the graph. An example is shown in Figure 

1(b). After the initialization in (a), firstly a new view (view 1) is added by initialize 

the view's pose using edge a. Then the new marker (marker 2) is added using edge b. 

 

Re-observe Old Markers 

The third situation is that all of the detected markers are old markers in the 

graph. In this case, the new view can be added using the same method as in the 

second situation while no new markers to be added. For example Figure 1(c), the new 

view (view 2) can be added using edge c or d or both. 

It is however worth noting that in marker SfM, if only one old marker is 

detected in a new photo, this photo is of little value to be added to the graph. Because 

if conditioned on this re-observed old marker's pose, the new view's is and will 

always be independent with all other views and markers, since no more edges can be 

linked back to this view. This is different with marker nodes since by adding more 

views the conditional independence could be removed, e.g., the marker 2 in Figure 

1(b) is conditional independent on the view 1, but not any more after the view 2 is 

added in Figure 1(c). 

 

Detect Marker Constraints 

After multiple marker nodes are initialized and added to the graph, their 

geometric relationship can be examined to detect potential pose constraints between 

markers. Typical constraints include parallelism, perpendicularity, coplanarity, and 

the aforementioned fixed-node constraint, which are all enforced as soft constraints. It 

preserves the uniform representation of each node's pose parameter, and represents 

constraints as a special type of observations. During optimizations, these constraint 

residuals are minimized together with ordinary observation residuals. For example, 

the perpendicularity constraint (denoted by ‘⊥’), and the parallelism constraint ( 

denoted by ‘//’), and the coplanarity constraint (denoted by ‘p’), can be represented 

respectively in equation (2), where 𝐫3(𝐞) is the third column of the rotation matrix 

𝐑(𝐞)  computed by the well-known Rodrigues’ formula , representing a marker's 

normal direction in the world coordinate frame; 𝜎//
−1, 𝜎⊥

−1, and 𝜎p
−1 are the weighting 

factors for the constraints indicating the user's confidence of these constraints: 
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Final Optimization 

After a new photo is processed by the above three operations just described, a 

full optimization of the all poses can be performed as in the original camera marker 
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network method (Feng et al. 2015). When all photos are processed, a final 

optimization adjusting the camera intrinsic parameters with all poses is performed 

considering that camera intrinsic parameters were calibrated previously independent 

to this estimation. This slightly modifies the optimization equation as: 

 
ˆ

2

,

2

c
ˆ ˆ ˆ, arg min ( , ; ) ( )  

Z
PK X

K X Z F K X Y G X  (3) 

where the camera intrinsic parameters vector K becomes a part of system state, 

instead of the original parameters for the function F in Feng et al. (2015). This is 

illustrated in Figure 1(e) where the K is shown in grey with dotted edges linking to all 

the views whose poses are directly affected when adjusting K. 

The above five operations can thus be summarized in Algorithm 1, which 

described a post processing version of marker SfM. It can be conveniently converted 

to online processing by 1) performing step 1 to 8 for each new photo; 2) evaluating 

pose uncertainties as in (Feng et al. 2015); 3) performing a final optimization after the 

user stops and all markers are estimated with sufficient certainty. 

 

Algorithm 1. Marker Structure from Motion 

 

Marker and Plane Structure from Motion 

Many applications can be readily addressed using the marker SfM proposed 

above, for example, measuring dimensions for interior design. Because markers' 

poses can be used to calculate distances between parallel planes (e.g., height of a 

room, etc.), dihedral angles between planes (e.g., walls, roofs, etc.), and so on. 

Essentially the markers and the camera serve as a more accurate tape and protractor. 

In some advanced applications, such as rapidly creating a realistic 3D model 

of a room, the marker SfM might not be satisfactory. With low cost 3D sensors like 

Kinect, a marker and plane SfM using a RGBD camera as the data collection device 

is thus proposed here. This method extends camera marker networks with a new type 

of observations, i.e., 3D planes extracted from depth image (Feng et al. 2014). 

 

Extended Camera Marker Graph 

Just as the original camera marker networks, such an extended one can be 

considered as a graph G = (V, E) with two types of nodes 𝐕 = (𝐗,𝚷) and three types 

Initialize a camera marker graph G using equation (1); 

For i = 1 to N: 

1. Detect markers in photo Ii; 

2. If no detected marker exists in G, swap Ii and Ii+1, and redo step 1; 

3. Initialize a new view node v in G using detected markers that exist in G; 

4. Add an edge between v and each detected existing marker in G; 

5. Initialize a new marker node for each detected markers that is not yet in G; 

6. Add an edge between v and each of these newly added marker nodes; 

7. Perform an optimization of all nodes as in Feng et al. (2015); 

8. For each new marker n added in step 5, and each node m in G other than n: 

a. Calculate constraint residuals between n and m, e.g. using equation (2); 

b. If any residual is smaller than a pre-defined threshold, request user approval for adding a 

constraint edge between node n and m; 

Final optimization of intrinsic parameters and all nodes using equation (3). 
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of edges E (marker and plane observation edges, and constraint edges). The two new 

elements are plane nodes 𝚷 = {𝐩i ≡ (𝒆i, 𝑑i)}  and plane observation edges 𝐐 =

{𝐪j ≡ (𝑣j, 𝑝j, 𝐀j)}. Each plane node 𝐩i  is a 3D column vector parameterizing that 

plane's orientation and location. Each plane observation edge contains a view's index 

𝑣𝑗  and a plane's index 𝑝𝑗 , and also an observation matrix 𝐀j  3D anchor points 

sampled from all points in plane 𝑝𝑗  observed at view 𝑣𝑗 , similar to Taguchi et al. 

(2013). Like equation (2), the residuals of an anchor point ai in such an edge q=(v, p, 

A) is  1/2h( , , ) [ , ( ) ( ) , ]v vp vp pi d  T T
qx p A P n e R e a t , where n(.) is the 3D 

unit normal vector of the plane p, and 𝐏𝐪
−1/2

 is the weighting matrix for this edge. 

This essentially calculates the point-plane distances between the plane and each 

anchor point transformed into the world coordinate frame. 

Stacking such equations for all plane observation edges results in equation 

1 1 1( , ) h( , , ) , ,h( , , )
S Sv p v p S

 
 

T
T T

H X x p A x p AΠ . Thus the original optimization 

and the full optimization including camera intrinsic parameters are extended to: 

 
ˆ

2 2

,

2ˆ ˆ( , ) arg min ( ; , ) ( , ) )ˆ (   
Z

PX Π

Π ΠX Z F X Y K H X G X  (4) 

 
ˆ

2 2

c

2

, ,

ˆ ˆ ˆ( , , ) arg min ( , ; ) ( ,ˆ ) ( )   
Z

PK X Π

K X Z F K ΠX Y H X G XΠ  (5) 

 

Algorithm 2. Marker and Plane Structure from Motion 

 

Plane Matching 

It is worth noting another difference in this extended graph, which is the 

matching of a currently observed plane to a plane in the graph. While matching 

markers across different views in the original graph is straightforward with markers' 

unique IDs, 3D planes extracted from point clouds cannot be matched in that way. 

However with marker SfM, a newly added view's pose is already estimated in the 

world coordinate frame approximately. Thus each extracted 3D plane in this view can 

Initialize a camera marker graph G using equation (1); 

For i = 1 to N: 

1. Perform step 1 to 8 of Algorithm 1 on the photo Ii; 

2. If the photo was swapped in 1, swap the point cloud Di with Di+1; 

3. Extract planes based on Feng et al. (2014) on Di; 

4. For each extracted plane p: 

a. Transform p to the world coordinate frame using the pose of the new view node v 

just added in step 3 of Algorithm 1; 

b. Find the best matching plane q of p in all planes in G, by equation (6); 

c. If the differences between q and p are within pre-defined thresholds: 

i. Add a new plane observation edge between v and q to G; 

ii. Expand the boundary of q by p; 

d. Otherwise: 

i. Add p as a new plane node to G; 

ii. Add a new plane observation edge between v and p to G; 

5. Perform an optimization of all nodes using equation (4); 

Final optimization of intrinsic parameters and all nodes using equation (5). 
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be transformed to the world coordinate frame and matched to its most "similar" plane 

in the extended graph, in terms of criteria such as the normal and distance deviations: 

  d( , ) [acos ( ) ( ) , abs( )]a b a b a bd d T T
p p n e n e  (6) 

where the second term may be replaced by the average distance between one plane 

and anchor points of the other plane, to increase matching robustness. 

Finally, the extended marker and plane SfM is summarized in Algorithm 2. 

Note that constraint edges in marker SfM can be add between plane nodes in similar 

ways as described in step 8 of Algorithm 1, thus not repeated here. 

 

EXPERIMENTAL RESULTS 

 

Accuracy of Marker Structure from Motion 

Both Algorithm 1 and Algorithm 2 were implemented in MATLAB. 30 

Apriltags were printed on A4 papers, each tag of size 172mm. These markers are then 

attached on walls, floors and ceilings of a two-story apartment. The marker structure 

was recovered using 66 photos. 

 

 
Figure 2. Marker SfM results and position errors 

 

To evaluate the accuracy of marker SfM, a Topcon PS 101A total station 

(nominal precision: 2mm and 0.5 second within 100m) was employed to survey those 

markers' poses as a baseline for comparison. To avoid station registration errors in 

this baseline result, the total station was setup in a single station that can directly 

observe a maximum of 17 markers. Then the four corners of these 17 markers were 

surveyed, resulting in 
s
X . The corresponding estimated corner positions, 

w
X , were 

calculated from marker SfM. Using the well-known rigid body registration, one can 

calculate ,w w
s sR t  that transforms surveyed points s

iX  to the world coordinate 

frame, and thus the discrepancies ( )w w s w
i i s i s  E X R X t . 

The bottom-left of Figure 2 shows the error vector Ei in black ‘.’, and its 

projection onto each side planes (Ex, Ey, Ez). The bottom-middle shows a histogram 

of Ei and bottom-right shows the relative error (Ei dividing by the scale of all these 

markers' distribution on the X, Y and Z directions). The majority of errors are within 

10mm with the largest positional error of 29.5mm, while the absolute errors on 

average are 5, 4, 2mm on X, Y, Z directions respectively. Note that these markers are 

distributed with a scale of about 9m along the X direction. Thus the maximum 

relative error of this marker SfM is about 0.3%, which is of sufficient accuracy 
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considering that it was achieved using an ordinary webcam-style RGB camera (of 

image size 640x480 pixels) on the Kinect device (depth image to be used below). 

 

 
Figure 3. Results of marker and plane SfM 

 

As-built Models from Marker and Plane Structure from Motion 

A second experiment was performed to test the marker and plane SfM 

algorithm, using the previous 66 RGB images, and the corresponding 66 depth image. 

Some intermediate plane extraction results are shown in the top-left and top-middle 

of Figure 3. The 66 point clouds were transformed into the world coordinate frame 

using estimated poses for each view and then merged into a single point cloud, whose 

front, and top views are shown in the bottom of Figure 3 (down sampled for clarity). 

This is the point cloud form of the as-built model of the apartment, with only a few 

paper markers and a low cost Kinect camera. A more concise form is shown in the 

top-left of Figure 3. These polygons are the observed boundaries of each plane. 

Compared to the point cloud form, this polygon form is more close to the parametric 

models used in BIM with more semantics. 

 

CONCLUSIONS 

In conclusion, this research extended the camera marker network method, 

resulted in two types of novel 3D modeling and pose estimation techniques. The two 

techniques require only a low cost RGB/RGBD camera and a few markers to perform 

dimension measurements, 3D scanning and modeling, and also pose estimation. 

Furthermore, the experiments have shown these techniques’ satisfactory accuracy at 

sufficiently large scales. Moreover, the marker and plane SfM algorithm enables 

automatic wireframe model generation which could help as-built BIM generation. 

The future direction for this research contains several aspects. Firstly the 

marker and plane SfM algorithm's accuracy needs to be improved since the errors in 

the point cloud from Kinect adversely affect the marker SfM accuracy. Secondly a 
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better user guidance algorithm needs to be integrated where end users will be guided 

by the algorithm step by step to take photos at the best poses generated by the 

algorithm. This will greatly shorten the amount of time for end users to learn such 

techniques. Thirdly, the potential of multiple cameras needs to be explored to 

increase the flexibility and reduce the amount of views needed. Last but not least, 

VSLAM needs to be integrated to further increase the efficiency and range of 

applications. 
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