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http://www.infrastructurereportcard.org/the-impact/explore-
infographics/surface-transportation-infrastructure/



Inspection & Maintenance: Bridge

4(FHWA 2012, Bridge inspector’s reference manual)
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Inspection & Maintenance: Tunnel

5(FHWA 2015, Tunnel Operations, Maintenance, Inspection, and Evaluation Manual)



Inspection & Maintenance: Dam
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http://www.ropeworks.com/service.htm

https://www.usbr.gov/lc/region/featu
re/Rope_Access_Team_130628.html

http://news3lv.com/news/local/gallery/hoover-
dam-concrete-spillways-need-different-safety-
measures-than-oroville-dam-erosion#photo-2



Robots are coming!
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NYPA 2013

http://www.xyht.com/aerialuas/m
ulticopter-profiles/

http://www.ece.rutgers.edu/node/
1135

http://echord.eu/essential_grid/arsi/

https://ara.cse.unr.edu/?page_id=183

http://www.naylornetwork.com/app-ppw/articles/index-v2.asp?aid=229258&issueID=30529
http://www.naylornetwork.com/app-ppw/articles/index-v2.asp?aid=229258&issueID=30529


How to Teach Robots to Inspect?

• Challenge: large amount of data

– Rapid and accurate decision-making

• Existing works: Supervised Learning (Koch et al. 2015)

– Shallow methods

• SVM, Random Forrest, etc. (Prasanna et al. 2012, 2016)

– Deep methods (Soukup and  Huber-Mork 2014;  Protopapadakis and 

Doulamis 2015; Zhang et al. 2016)

• Convolutional Neural Networks (CNN)
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Problems of Existing Methods

• Shallow methods

– Feature engineering

• Hand-crafted features

• Tedious for many tasks

• May require expert knowledge

• Deep methods

– Requires large amount of labeled data

• Need time/money/experts
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Our Problem Formulation

• Input: image patch 𝑥

• Output: defect probability 𝐲 = [𝑦0, 𝑦1]
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• Our contributions

– ResNet (He et al. 2015) for four types of 
defect detection

– Active learning (Settles 2010) for training, 
with a novel sampling strategy

𝒚 = 𝑓𝜃(𝑥)



Deep Residual Learning

• ResNet as the classifier 𝒚 = 𝑓𝜃(𝑥)

– 𝒛1 = 𝑓𝜃1 𝑥 + 𝑥, …., 𝒛𝒏 = 𝑓𝜃𝑛 𝒛𝑛−1 + 𝒛𝑛−1

– 𝒚 = 𝑓𝜃𝑛+1 𝒛𝑛 + 𝒛𝑛

– Efficient learning of a deeper network (30+ layers)

• Loss Function: weighted cross-entropy loss

– 𝐸 =
−1

𝑁
σ𝑛=1
𝑁 𝑤 𝑙𝑛 𝑙𝑜𝑔 𝑦𝑛,𝑙𝑛

– Handle unbalanced positive-negative ratio 
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Experiments

• Experimental Dataset: 289440 patches

– Train : validation : test = 3 : 1 : 1

– Train four classifiers
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Crack Deposit Water Leakage



Defect Detection Results
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Active Learning (AL)
• Data annotation for supervised learning

– Tedious/expensive/qualified annotator

• AL: aims for the most efficient data annotation

– Fewer data to achieve same accuracy
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AL Analogy: Initial Training
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AL Analogy: Selected Feedbacks
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Active Learning Results

• Positive AL

– “Robot says this is defect, can you verify it?”

• Uncertainty AL

– “Robot is not sure…”

• Test AL on “any” detector

– “train+validation”

– Positive AL saves 30%
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>65K labeled data



Recap: Deep Active Learning
• Defect detection is important for civil infrastructure

• Deep Learning avoids explicit feature engineering
– Need more data

• ResNet allows deeper networks for higher accuracy

• Active learning samples most informative data to 
improve classifier
– Positive sampling strategy for defect detection
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Thank you! Questions?

Chen Feng (in Chinese: 冯晨)
Ph.D., Research Scientist
Computer Vision Group
MERL
E-mail: cfeng@merl.com
Web: https://simbaforrest.github.io
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